MATHEMATICS METHODS

MAWA Semester 1 (Unit 3) Examination 2018 Calculator-free

Marking Key

© MAWA, 2018

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing them how the work is marked but students are not to retain a copy of the paper or marking guide until the agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is

• the end of week 8 of term 2, 2018

Section One: Calculator-free

(50 Marks)

(2 marks)

(2 marks)

Question	1	(a)
----------	---	-----

Solution	
$\frac{d}{dx}(x\cos x) = x(-\sin x) + \cos x$	
$=\cos x - x\sin x$	
Mathematical behaviours	Marks
applies product rule	1
• differentiates cos x term	1

Question 1 (b)

Solution	
$\frac{d}{dx}(x^3 + 4\sin x)^5 = 5(x^3 + 4\sin x)^4 \cdot \frac{d}{dx}(x^3 + 4\sin x)$	
$=5(x^{3}+4\sin x)^{4}(3x^{2}+4\cos x)$	
Mathematical behaviours	Marks
applies the chain rule	1
• differentiates <i>sin x</i> term	1

Question 1 (c)

(3 marks)

Solution	
$\frac{d}{dx}\left(\frac{e^{-2x}}{4x+2}\right)$	
$f(x) = e^{-2x}$ $f'(x) = -2e^{-2x}$ $g(x) = 4x + 2$ $g'(x) = 4$	
$=\frac{(4x+2)\cdot(-2e^{-2x})-e^{-2x}\cdot 4}{(4x+2)^2}$	
$=\frac{-2(4x+2)(e^{-2x})-4e^{-2x}}{(4x+2)^2}$	
Mathematical behaviours	Marks
• applies chain rule to obtain f'(x)	1
applies quotient rule	1
correct answer	1

Question 2

(4 marks)

Solution	
$A = 2 \int_{0}^{\frac{\pi}{3}} \sin 3x dx$ = $2 \left[\frac{-\cos 3x}{3} \right]_{0}^{\frac{\pi}{3}}$ = $\frac{2}{3} \left[-\cos \pi + \cos 0 \right]$ = $\frac{2}{3} \left[1 + 1 \right]$ = $\frac{4}{3}$	
Mathematical behaviours	Marks
 states a correct expression using integrals to determine the area 	1
 anti-differentiates integral correctly 	1
 subs in limits of integration correctly 	1
determines correct result	1

Question 3

(3 marks)

Solution	
$f'(x) = x + \sqrt{3 + 6x}$	
$\therefore f(x) = \frac{x^2}{2} + \frac{(3+6x)^{\frac{3}{2}}}{6} \cdot \frac{2}{3} + c$	
$f(1) = 10 \Longrightarrow 10 = \frac{1}{2} + \frac{(3+6(1))^{\frac{3}{2}}}{6} \cdot \frac{2}{3} + c$	
ie $10 = \frac{1}{2} + \frac{9^{\frac{3}{2}}}{9} + c$	
ie $c = 6\frac{1}{2}$	
$\therefore f(x) = \frac{x^2}{2} + \frac{(3+6x)^{\frac{3}{2}}}{9} + 6.5$	
Mathematical behaviours	Marks
anti-differentiates square root term	1
• uses anti-derivative and $f(1) = 10$ to determine c	1
• states $f(x)$	1

Question 4 (a)

(1 mark)

Solution	
X has a discrete uniform distribution	
Mathematical behaviours	Marks
states that the distribution is uniform	1

Question 4 (b)

(1 mark)

(2 marks)

Solution	
There are $550 - 250 + 1 = 301$ whole numbers in the interval $250 \le X \le 550$.	
So $P(250 \le X \le 550) = 0.301$	
Mathematical behaviours	Marks
correct answer	1

Question 4 (c)

Solution		
There are $\frac{1000}{7} = 142\frac{6}{7}$, and so there are 142 whole numbers in the interval $1 \le X \le 1000$		
that are divisible by 7.		
So $P(X \text{ is divisible by 7}) = 0.142$.		
Mathematical behaviours	Marks	
obtains 142 whole numbers divisible by 7	1	
divides by 1000	1	

Question 4 (d)

(4 marks)

Solution		
In the interval $1 \le X \le 1000$ there are:		
100 whole numbers that are divisible by 10, 40 whole numbers that are divisible by 25,		
and 20 whole numbers that are divisible by both 10 and 25, (i.e. divisible by 50)		
So there are $100 + 40 - 20 = 120$ whole numbers that are divisible by 10 or 25.		
and so $P(X \text{ is divisible by } 10 \text{ or } 25) = 0.12.$		
Mathematical behaviours	Marks	
 correct numbers for divisibility by 10 and by 25 	1+1	
• uses $\#(A \cup B) = \#(A) + \#(B) - \#(A \cap B)$	1	
divides by 1000	1	

Question 4 (e)

(2 marks)

Solution	
The following numbers have exactly two 3's in their decimal expansion:	
33, 133, 233, 433,, 933, 303, 313, 323, 343,, 393, and 330, 331, 332, 334, 339	
So $P(X \text{ has exactly two 3's in its decimal expansion}) = \frac{27}{1000} = 0.027.$	
Mathematical behaviours	Marks
 obtains 27 whole numbers with the desired property 	1
divides by 1000	1

(3 marks)

Question 6 (a)

(2 marks) Solution $\frac{1-2x}{x^3} dx = \int x^{-3} - 2x^{-2} dx = \frac{2}{x} - \frac{1}{2x^2} + c$ Mathematical behaviours Marke

	Wallematical benaviours	IVIAL KS
•	splits the fraction into two parts and anti-differentiates x^{-3}	1
•	states anti-derivative including + c	1

Question 6 (b)

(2 marks) Solution $\frac{\sin \pi x}{\pi} + c$ π π $-\cos \pi x \quad dx = -\cos x$ sin Mathematical behaviours Marks 1 anti-differentiates sin or cos part of expression correctly • 1 states correct solution

6

Question 6 (c)

(2 marks)

(3 marks)

Solution	
$\int \left(e^{x} - \frac{1}{e^{x}}\right)^{2} dx = \int e^{2x} - 2 + e^{-2x} dx = \frac{e^{2x}}{2} - 2x - \frac{e^{-2x}}{2} + c$	
Mathematical behaviours	Marks
expands brackets correctly	1
 anti-differentiates each part correctly 	1

Question 7 (a)

	Solution	
y =	$= \sec(\frac{\pi}{3} - x)$	
u(.	$x) = \frac{\pi}{3} - x \qquad u'(x) = -1 \qquad \frac{d}{dx} \sec x = \frac{\sin x}{\cos^2 x}$	
$\frac{dy}{dx}$	$=\frac{\sin(u(x))}{\cos^2(u(x))} \cdot u'(x)$	
$\frac{dy}{dx}$	$= \frac{\sin\left(\frac{\pi}{3} - x\right)}{2(\pi)} \cdot (-1) = -\frac{\sin\left(\frac{\pi}{3} - x\right)}{2(\pi)}$	
	$\cos^2\left(\frac{-x}{3}\right)$ $\cos^2\left(\frac{-x}{3}\right)$	
	Mathematical behaviours	Marks
•	correctly differentiates sec x	1
•	applies chain rule	1
•	correct answer	1

Question 7 (b)

(4 marks)

Solution		
$\frac{dy}{dx} = -\frac{\sin\left(\frac{\pi}{3} - x\right)}{\cos^2\left(\frac{\pi}{3} - x\right)}, \text{ when } x = \frac{2\pi}{3}$		
$= -\frac{\sin\left(\frac{\pi}{3} - \frac{2\pi}{3}\right)}{\cos^2\left(\frac{\pi}{3} - \frac{2\pi}{3}\right)} = -\frac{\sin\left(-\frac{\pi}{3}\right)}{\cos^2\left(-\frac{\pi}{3}\right)}$		
$= -\frac{\frac{-\sqrt{3}}{2}}{\left(-\frac{1}{2}\right)^2} = \frac{\sqrt{3}}{2} \div \frac{1}{4} = 2\sqrt{3}$		
Mathematical behaviours	Marks	
correct substitution and subtraction of fractions	1+1	
both exact values correct	1	
correct simplified answer	1	

Question 8 (a) (i) mark)

Solution
$$\int_{0}^{4} f(x) dx = A - B$$
Mathematical behavioursMarks• determines expression1

Question 8 (a) (ii)

(3 marks)

(1

Solution	
$\int_{0}^{4} 2f(x) dx + \int_{8}^{4} f(x) dx$	
$= 2\int_{0}^{4} f(x) dx - \int_{4}^{8} f(x) dx$ = 2(A-B)-2A = -2B	
Mathematical behaviours	Marks
	IVIAINS
• uses linearity to deduce $\int_{0}^{4} 2f(x) dx = 2(A - B)$	1
• uses relationship $\int_{8}^{4} f(x) dx = -\int_{4}^{8} f(x) dx$	1
 sums expressions and simplifies 	1

9

10

CALCULATOR-FREE SEMESTER 1 (UNIT 3) EXAMINATION

Question 8 (b)

Solution	
$\int_{6}^{8} f'(x) \ dx = f(8) - f(6) = 0 - 3 = -3$	
Mathematical behaviours	Marks
applies the Fundamental Theorem	1
evaluates result	1

Question 8 (c) (i)

Area $\Delta = 8$ $f(x) dx = -4 \Rightarrow f(x) dx = 0$ *.*:. \therefore one value of *m* is m = 3. f(x) dx = 0 for any function Also, hence, m = 0 is another solution. From the symmetry of the graph, m = 6,9,12Hence m = 0, 3, 6, 9, 12. Mathematical behaviours Marks 1 • states m = 0 or m = 31 states all correct values for m

marks)

Question 8 (c) (ii) marks)

(2

Solution	
$\int_{0}^{4} g(x) dx = \int_{0}^{4} [f(x) + 2] dx$ = $\int_{0}^{4} f(x) dx + \int_{0}^{4} 2 dx$ = $(-4) + 2(4-0)$ = 4	
Mathematical behaviours	Marks
• uses linearity to split $g(x)$	1
evaluates sum of integrals	1

(2

(2 marks)

Solution